# Morton encoding/decoding through bit interleaving: Implementations

**UPDATE 2016:** I’ve bundled and improved a lot of these methods in a library called libmorton.** Read about it here**. The code used in this post is outdated and might have bugs. Keeping this post online for reference, but I highly suggest using **libmorton** for actual implementations.

In my research on building Sparse Voxel Octrees, I often use Morton codes. The Morton order is a mapping from an n-dimensional space onto a linear list of numbers. If you apply it to coordinates, the morton order defines a space-filling curve which is Z-shaped – that’s why the Morton order is often called Z-order or Z-curve as well. The curve has some nice locality properties: coordinates which are close to eachother in the N-dimensional space have morton numbers which are close to eachother too.

The Z-order curve inspired a lot of people to do great stuff with compression and parallel data construction. In my High Performance Graphics paper, I use the property that Morton order is a post-order depth-first traversal of a multi-dimensional tree to efficiently build a Sparse Voxel Octree. Go read it ;)

If you want to convert a certain set of integer coordinates to a Morton code, you have to convert the decimal values to binary and interleave the bits of each coordinate:

- (x,y,z) =
**(5,9,1)**= (0101,1001,0001) - Interleaving the bits results in: 010001000111 =
**1095**th cell along the Z-curve.

So in order to do anything interesting with the Morton order, we need an efficient way of interleaving bits of a three-dimensional coordinate. For the following functions, I assume:

- The
**morton code**is stored as a**64-bit integer**. **x, y**and**z**are three**unsigned, 32-bit integers**. Only 21 bits (starting from the right) will be used, because 3 x 21 bits is 63 bits, which is the maximum we can fit in a 64-bit morton code. So yes, still one bit free for a custom flag of your choosing! (hint: In a voxel-based system, this can be your “filled” boolean)

We’ll be using a lot of bitwise operations in the following code, so read up if you’re not familiar with them. We’ll mainly be using left and right shifts (<< and >>) and bitwise and (&) and or (|).

Keep in mind: my code is distributed under the **Creative Commons Attribute-NonCommercial Sharealike 3.0 Unported license**. All code is also available in this **Github repository**.

**Update (nov 2013)**: **Alexandre Avanel** made a great LUT-based implementation as well. Available in this github repo. Also thanks to Alexandre for an optimization in the for-loop based method below.

**Update (apr 2014)** Another great SIMD-based implementation **here**.

## For-loop based method

The first way of tackling this is to use a for-loop with shifts. As you can see, we make sure the bits from x are right-most, then the ones from y in the middle and z to the left. We incrementally build the answer by shifting in new bits form each of the input coordinates.

#include <stdint.h> #include <limits.h> using namespace std; inline uint64_t mortonEncode_for(unsigned int x, unsigned int y, unsigned int z){ uint64_t answer = 0; for (uint64_t i = 0; i < (sizeof(uint64_t)* CHAR_BIT)/3; ++i) { answer |= ((x & ((uint64_t)1 << i)) << 2*i) | ((y & ((uint64_t)1 << i)) << (2*i + 1)) | ((z & ((uint64_t)1 << i)) << (2*i + 2)); } return answer; }

This method is easy to implement, compact, and relatively easy to read (though you might panic when you’re not used to bitwise operations).

## “Magic Bits” method

Inspired by this blogpost by fgiesen, Sean Eron Anderson’s Bit Twiddling Hacks and this StackOverflow discussion, I generated this method for interleaving 32-bits integers into a 64-bit morton code.

This is a bit harder to implement / understand, and isn’t that straightforwardly extendable for more bits / other input sizes, but it is a whole lot faster than the previous method (see performance comparison further down) and has the added benefit of being nice and small compared to the LUT implementation.

#include <stdint.h> #include <limits.h> using namespace std; // method to seperate bits from a given integer 3 positions apart inline uint64_t splitBy3(unsigned int a){ uint64_t x = a & 0x1fffff; // we only look at the first 21 bits x = (x | x << 32) & 0x1f00000000ffff; // shift left 32 bits, OR with self, and 00011111000000000000000000000000000000001111111111111111 x = (x | x << 16) & 0x1f0000ff0000ff; // shift left 32 bits, OR with self, and 00011111000000000000000011111111000000000000000011111111 x = (x | x << 8) & 0x100f00f00f00f00f; // shift left 32 bits, OR with self, and 0001000000001111000000001111000000001111000000001111000000000000 x = (x | x << 4) & 0x10c30c30c30c30c3; // shift left 32 bits, OR with self, and 0001000011000011000011000011000011000011000011000011000100000000 x = (x | x << 2) & 0x1249249249249249; return x; } inline uint64_t mortonEncode_magicbits(unsigned int x, unsigned int y, unsigned int z){ uint64_t answer = 0; answer |= splitBy3(x) | splitBy3(y) << 1 | splitBy3(z) << 2; return answer; }

## Lookup Table (LUT) method

This is basicly a divide-and-conquer method. We can precompute splitting a certain subset of bits (1 byte = 8 bits = decimals 0 -> 255). And then split the input integers byte-by-byte, and shift the results in place.

For an even further optimization, I also precomputed the shifts for y and z. So the extra tables are basicly the same as the Morton256_x table, but shifted to the left by 1 bit (for y) and 2 bits (for z). This seems like a trivial optimization, but it saves on doing 6 shifts, which can make a difference if computing morton codes is on your critical path.

How much do these tables cost? It’s 256 * 32 bits * 3 tables = ~**3 Kb**, so your executable size won’t take a big hit. Of course, baking bigger tables results in a bigger speedup and bigger executable size.

#include <stdint.h> #include <limits.h> using namespace std; static const uint32_t morton256_x[256] = { 0x00000000, 0x00000001, 0x00000008, 0x00000009, 0x00000040, 0x00000041, 0x00000048, 0x00000049, 0x00000200, 0x00000201, 0x00000208, 0x00000209, 0x00000240, 0x00000241, 0x00000248, 0x00000249, 0x00001000, 0x00001001, 0x00001008, 0x00001009, 0x00001040, 0x00001041, 0x00001048, 0x00001049, 0x00001200, 0x00001201, 0x00001208, 0x00001209, 0x00001240, 0x00001241, 0x00001248, 0x00001249, 0x00008000, 0x00008001, 0x00008008, 0x00008009, 0x00008040, 0x00008041, 0x00008048, 0x00008049, 0x00008200, 0x00008201, 0x00008208, 0x00008209, 0x00008240, 0x00008241, 0x00008248, 0x00008249, 0x00009000, 0x00009001, 0x00009008, 0x00009009, 0x00009040, 0x00009041, 0x00009048, 0x00009049, 0x00009200, 0x00009201, 0x00009208, 0x00009209, 0x00009240, 0x00009241, 0x00009248, 0x00009249, 0x00040000, 0x00040001, 0x00040008, 0x00040009, 0x00040040, 0x00040041, 0x00040048, 0x00040049, 0x00040200, 0x00040201, 0x00040208, 0x00040209, 0x00040240, 0x00040241, 0x00040248, 0x00040249, 0x00041000, 0x00041001, 0x00041008, 0x00041009, 0x00041040, 0x00041041, 0x00041048, 0x00041049, 0x00041200, 0x00041201, 0x00041208, 0x00041209, 0x00041240, 0x00041241, 0x00041248, 0x00041249, 0x00048000, 0x00048001, 0x00048008, 0x00048009, 0x00048040, 0x00048041, 0x00048048, 0x00048049, 0x00048200, 0x00048201, 0x00048208, 0x00048209, 0x00048240, 0x00048241, 0x00048248, 0x00048249, 0x00049000, 0x00049001, 0x00049008, 0x00049009, 0x00049040, 0x00049041, 0x00049048, 0x00049049, 0x00049200, 0x00049201, 0x00049208, 0x00049209, 0x00049240, 0x00049241, 0x00049248, 0x00049249, 0x00200000, 0x00200001, 0x00200008, 0x00200009, 0x00200040, 0x00200041, 0x00200048, 0x00200049, 0x00200200, 0x00200201, 0x00200208, 0x00200209, 0x00200240, 0x00200241, 0x00200248, 0x00200249, 0x00201000, 0x00201001, 0x00201008, 0x00201009, 0x00201040, 0x00201041, 0x00201048, 0x00201049, 0x00201200, 0x00201201, 0x00201208, 0x00201209, 0x00201240, 0x00201241, 0x00201248, 0x00201249, 0x00208000, 0x00208001, 0x00208008, 0x00208009, 0x00208040, 0x00208041, 0x00208048, 0x00208049, 0x00208200, 0x00208201, 0x00208208, 0x00208209, 0x00208240, 0x00208241, 0x00208248, 0x00208249, 0x00209000, 0x00209001, 0x00209008, 0x00209009, 0x00209040, 0x00209041, 0x00209048, 0x00209049, 0x00209200, 0x00209201, 0x00209208, 0x00209209, 0x00209240, 0x00209241, 0x00209248, 0x00209249, 0x00240000, 0x00240001, 0x00240008, 0x00240009, 0x00240040, 0x00240041, 0x00240048, 0x00240049, 0x00240200, 0x00240201, 0x00240208, 0x00240209, 0x00240240, 0x00240241, 0x00240248, 0x00240249, 0x00241000, 0x00241001, 0x00241008, 0x00241009, 0x00241040, 0x00241041, 0x00241048, 0x00241049, 0x00241200, 0x00241201, 0x00241208, 0x00241209, 0x00241240, 0x00241241, 0x00241248, 0x00241249, 0x00248000, 0x00248001, 0x00248008, 0x00248009, 0x00248040, 0x00248041, 0x00248048, 0x00248049, 0x00248200, 0x00248201, 0x00248208, 0x00248209, 0x00248240, 0x00248241, 0x00248248, 0x00248249, 0x00249000, 0x00249001, 0x00249008, 0x00249009, 0x00249040, 0x00249041, 0x00249048, 0x00249049, 0x00249200, 0x00249201, 0x00249208, 0x00249209, 0x00249240, 0x00249241, 0x00249248, 0x00249249 }; // pre-shifted table for Y coordinates (1 bit to the left) static const uint32_t morton256_y[256] = { 0x00000000, 0x00000002, 0x00000010, 0x00000012, 0x00000080, 0x00000082, 0x00000090, 0x00000092, 0x00000400, 0x00000402, 0x00000410, 0x00000412, 0x00000480, 0x00000482, 0x00000490, 0x00000492, 0x00002000, 0x00002002, 0x00002010, 0x00002012, 0x00002080, 0x00002082, 0x00002090, 0x00002092, 0x00002400, 0x00002402, 0x00002410, 0x00002412, 0x00002480, 0x00002482, 0x00002490, 0x00002492, 0x00010000, 0x00010002, 0x00010010, 0x00010012, 0x00010080, 0x00010082, 0x00010090, 0x00010092, 0x00010400, 0x00010402, 0x00010410, 0x00010412, 0x00010480, 0x00010482, 0x00010490, 0x00010492, 0x00012000, 0x00012002, 0x00012010, 0x00012012, 0x00012080, 0x00012082, 0x00012090, 0x00012092, 0x00012400, 0x00012402, 0x00012410, 0x00012412, 0x00012480, 0x00012482, 0x00012490, 0x00012492, 0x00080000, 0x00080002, 0x00080010, 0x00080012, 0x00080080, 0x00080082, 0x00080090, 0x00080092, 0x00080400, 0x00080402, 0x00080410, 0x00080412, 0x00080480, 0x00080482, 0x00080490, 0x00080492, 0x00082000, 0x00082002, 0x00082010, 0x00082012, 0x00082080, 0x00082082, 0x00082090, 0x00082092, 0x00082400, 0x00082402, 0x00082410, 0x00082412, 0x00082480, 0x00082482, 0x00082490, 0x00082492, 0x00090000, 0x00090002, 0x00090010, 0x00090012, 0x00090080, 0x00090082, 0x00090090, 0x00090092, 0x00090400, 0x00090402, 0x00090410, 0x00090412, 0x00090480, 0x00090482, 0x00090490, 0x00090492, 0x00092000, 0x00092002, 0x00092010, 0x00092012, 0x00092080, 0x00092082, 0x00092090, 0x00092092, 0x00092400, 0x00092402, 0x00092410, 0x00092412, 0x00092480, 0x00092482, 0x00092490, 0x00092492, 0x00400000, 0x00400002, 0x00400010, 0x00400012, 0x00400080, 0x00400082, 0x00400090, 0x00400092, 0x00400400, 0x00400402, 0x00400410, 0x00400412, 0x00400480, 0x00400482, 0x00400490, 0x00400492, 0x00402000, 0x00402002, 0x00402010, 0x00402012, 0x00402080, 0x00402082, 0x00402090, 0x00402092, 0x00402400, 0x00402402, 0x00402410, 0x00402412, 0x00402480, 0x00402482, 0x00402490, 0x00402492, 0x00410000, 0x00410002, 0x00410010, 0x00410012, 0x00410080, 0x00410082, 0x00410090, 0x00410092, 0x00410400, 0x00410402, 0x00410410, 0x00410412, 0x00410480, 0x00410482, 0x00410490, 0x00410492, 0x00412000, 0x00412002, 0x00412010, 0x00412012, 0x00412080, 0x00412082, 0x00412090, 0x00412092, 0x00412400, 0x00412402, 0x00412410, 0x00412412, 0x00412480, 0x00412482, 0x00412490, 0x00412492, 0x00480000, 0x00480002, 0x00480010, 0x00480012, 0x00480080, 0x00480082, 0x00480090, 0x00480092, 0x00480400, 0x00480402, 0x00480410, 0x00480412, 0x00480480, 0x00480482, 0x00480490, 0x00480492, 0x00482000, 0x00482002, 0x00482010, 0x00482012, 0x00482080, 0x00482082, 0x00482090, 0x00482092, 0x00482400, 0x00482402, 0x00482410, 0x00482412, 0x00482480, 0x00482482, 0x00482490, 0x00482492, 0x00490000, 0x00490002, 0x00490010, 0x00490012, 0x00490080, 0x00490082, 0x00490090, 0x00490092, 0x00490400, 0x00490402, 0x00490410, 0x00490412, 0x00490480, 0x00490482, 0x00490490, 0x00490492, 0x00492000, 0x00492002, 0x00492010, 0x00492012, 0x00492080, 0x00492082, 0x00492090, 0x00492092, 0x00492400, 0x00492402, 0x00492410, 0x00492412, 0x00492480, 0x00492482, 0x00492490, 0x00492492 }; // Pre-shifted table for z (2 bits to the left) static const uint32_t morton256_z[256] = { 0x00000000, 0x00000004, 0x00000020, 0x00000024, 0x00000100, 0x00000104, 0x00000120, 0x00000124, 0x00000800, 0x00000804, 0x00000820, 0x00000824, 0x00000900, 0x00000904, 0x00000920, 0x00000924, 0x00004000, 0x00004004, 0x00004020, 0x00004024, 0x00004100, 0x00004104, 0x00004120, 0x00004124, 0x00004800, 0x00004804, 0x00004820, 0x00004824, 0x00004900, 0x00004904, 0x00004920, 0x00004924, 0x00020000, 0x00020004, 0x00020020, 0x00020024, 0x00020100, 0x00020104, 0x00020120, 0x00020124, 0x00020800, 0x00020804, 0x00020820, 0x00020824, 0x00020900, 0x00020904, 0x00020920, 0x00020924, 0x00024000, 0x00024004, 0x00024020, 0x00024024, 0x00024100, 0x00024104, 0x00024120, 0x00024124, 0x00024800, 0x00024804, 0x00024820, 0x00024824, 0x00024900, 0x00024904, 0x00024920, 0x00024924, 0x00100000, 0x00100004, 0x00100020, 0x00100024, 0x00100100, 0x00100104, 0x00100120, 0x00100124, 0x00100800, 0x00100804, 0x00100820, 0x00100824, 0x00100900, 0x00100904, 0x00100920, 0x00100924, 0x00104000, 0x00104004, 0x00104020, 0x00104024, 0x00104100, 0x00104104, 0x00104120, 0x00104124, 0x00104800, 0x00104804, 0x00104820, 0x00104824, 0x00104900, 0x00104904, 0x00104920, 0x00104924, 0x00120000, 0x00120004, 0x00120020, 0x00120024, 0x00120100, 0x00120104, 0x00120120, 0x00120124, 0x00120800, 0x00120804, 0x00120820, 0x00120824, 0x00120900, 0x00120904, 0x00120920, 0x00120924, 0x00124000, 0x00124004, 0x00124020, 0x00124024, 0x00124100, 0x00124104, 0x00124120, 0x00124124, 0x00124800, 0x00124804, 0x00124820, 0x00124824, 0x00124900, 0x00124904, 0x00124920, 0x00124924, 0x00800000, 0x00800004, 0x00800020, 0x00800024, 0x00800100, 0x00800104, 0x00800120, 0x00800124, 0x00800800, 0x00800804, 0x00800820, 0x00800824, 0x00800900, 0x00800904, 0x00800920, 0x00800924, 0x00804000, 0x00804004, 0x00804020, 0x00804024, 0x00804100, 0x00804104, 0x00804120, 0x00804124, 0x00804800, 0x00804804, 0x00804820, 0x00804824, 0x00804900, 0x00804904, 0x00804920, 0x00804924, 0x00820000, 0x00820004, 0x00820020, 0x00820024, 0x00820100, 0x00820104, 0x00820120, 0x00820124, 0x00820800, 0x00820804, 0x00820820, 0x00820824, 0x00820900, 0x00820904, 0x00820920, 0x00820924, 0x00824000, 0x00824004, 0x00824020, 0x00824024, 0x00824100, 0x00824104, 0x00824120, 0x00824124, 0x00824800, 0x00824804, 0x00824820, 0x00824824, 0x00824900, 0x00824904, 0x00824920, 0x00824924, 0x00900000, 0x00900004, 0x00900020, 0x00900024, 0x00900100, 0x00900104, 0x00900120, 0x00900124, 0x00900800, 0x00900804, 0x00900820, 0x00900824, 0x00900900, 0x00900904, 0x00900920, 0x00900924, 0x00904000, 0x00904004, 0x00904020, 0x00904024, 0x00904100, 0x00904104, 0x00904120, 0x00904124, 0x00904800, 0x00904804, 0x00904820, 0x00904824, 0x00904900, 0x00904904, 0x00904920, 0x00904924, 0x00920000, 0x00920004, 0x00920020, 0x00920024, 0x00920100, 0x00920104, 0x00920120, 0x00920124, 0x00920800, 0x00920804, 0x00920820, 0x00920824, 0x00920900, 0x00920904, 0x00920920, 0x00920924, 0x00924000, 0x00924004, 0x00924020, 0x00924024, 0x00924100, 0x00924104, 0x00924120, 0x00924124, 0x00924800, 0x00924804, 0x00924820, 0x00924824, 0x00924900, 0x00924904, 0x00924920, 0x00924924 }; inline uint64_t mortonEncode_LUT(unsigned int x, unsigned int y, unsigned int z){ uint64_t answer = 0; answer = morton256_z[(z >> 16) & 0xFF ] | // we start by shifting the third byte, since we only look at the first 21 bits morton256_y[(y >> 16) & 0xFF ] | morton256_x[(x >> 16) & 0xFF ]; answer = answer << 48 | morton256_z[(z >> 8) & 0xFF ] | // shifting second byte morton256_y[(y >> 8) & 0xFF ] | morton256_x[(x >> 8) & 0xFF ]; answer = answer << 24 | morton256_z[(z) & 0xFF ] | // first byte morton256_y[(y) & 0xFF ] | morton256_x[(x) & 0xFF ]; return answer; }

## Performance comparison

I used the following code to benchmark the methods:

#define MAX 256 int main(int argc, char *argv[]) { Timer t; t.reset(); t.start(); for(size_t i = 0; i < MAX; i++){ for(size_t j = 0; j < MAX; j++){ for(size_t k = 0; k < MAX; k++){ mortonEncode(i,j,k) ; } } } t.stop();

And these are the results, tested at MAX=64, 128 and 256. As you can see, the Magic Bits and LUT methods are an order of magnitude faster than the basic for loop method (times in seconds)

MAX = 64 | MAX = 128 | MAX = 256 | |

For-loop | 0.2 | 1.6 | 13.13 |

Magic Bits | 0.01 | 0.13 | 1.06 |

LUT | 0.005 | 0.041 | 0.319 |

## Conclusion

If it’s on your critical path, it’s probably a good idea to opt for the Magic Bits method for a quick speedup. If you’re willing to put in a bit more effort and generate the tables (you can do that using the splitBy3 or similar method, btw), the big old Lookup Table gives the best performance.

## Leave a Reply to Sebastian Aaltonen Cancel reply